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Abstract

Fixed point theorems of Ciric [3], Fisher and Sessa [4], Gregus [5],
Jungcek [10] and Mukherjee and Verma [17] are generalized to a locally
convex space. As applications, common fixed point and invariant ap-
proximation results for subcompatible maps are obtained. Qur results
unify and generalize various known results to a more general class of
noncommuting mappings.
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1. Introduction and preliminaries

In the sequel, (F,7) will be a Hausdorfl locally convex topological vector
space. A family {p, : o € I} of seminorms defined on F is said to be an
associated family of seminorms for 7 if the family {yU : v > 0}, where U =
Mim1Us; and Uy, = {x : po, {2} < 1}, froms a base of neighborhoods of zero for
7. A family {p, : & € I} of seminorms defined on F is called an augmented
associated family for 7 if {p, : @ € I} is an associated family with property
that the seminorm max{ps,ps} € {po : @ € I} for any «, 8 € I. The
associated and augmented associated families of seminorms will be denoted
by A(7) and A*(7), respectively. It is well known that given a locally convex
space (E,7), there always exists a family {p, : @ € I} of seminorms defined
on £ such that {p, : o € I} = A*(7} (see[16, page 203}).
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The following construction will be crucial. Suppose that M is T-bounded
subset of E. For this set M we can select a number A\, > 0 foreach v € T
such that M C AU, where U, = {z : po(z) < 1}. Clearly B = N\ U, is
T-bounded, 7-closed absolutely convex and contains A4. The linear span Ejp
of B in E is U2,nB. The Minkowski functional of B is a norm || - ||z on
Ep. Thus (Ep,|| | /p) is a normed space with B as its closed unit ball and
sup, Pal(z/Aa) = ||z||p for each x € Ep (for details see [16,25]).

Let M be a subset of a locally convex space (E,7). Let T : M — M
be a mapping. A mapping T : M — M is called I-Lipschitz if there exists
k > 0 such that p,(Tx — Ty) < kpo(Iz — Iy) for any x,y € M and for all
Pa € A*(7). If k < 1 (respectively, k = 1), then T is called an I-contraction
(respectively, J-nonexpansive). A point z € M is a common fixed point of I
and T if r = Iz = Tx. The set of fixed points of T" is denoted by F(T'). The
pair {7, T} is called (1) commuting if T'Jx = ITz for all z € M, (2) R-weakly
commuting if for all z € M and for all p, € A*(7}, there exists R > 0 such that
Po(ITz — TIz) < Rpo(Iz — Txz). If R = 1, then the maps are called weakly
commuting [20]; {3) compatible {10,11,22] if for all p, € A*{7), lim, po(T Iz, —
ITz,) = 0 whenever {z,} is a sequence such that lim, Tz, = lim, Iz, =
for some ¢ in M. Suppose that M is ¢-starshaped with ¢ € F(J) and is both
T- and I-invariant. Then T and I are called (4) R-subcommuting on M (see
[21]) if for all # € M and for all p, € A*(7), there exists a real number R > 0
such that p,(ITz — TIz) < £p,(((1 - k)q + kTz) ~ Iz) for each k € (0,1).
If R = 1, then the maps are called l-subcommuting [7]; (5) R-subweakly
commuting on M (see [8,9]) if for all x € M and for all p, € A*(7), there
exists a real number R > 0 such that p,(/Tx—T1z) < Rd,, (Iz,[g,Tx]), where
lg, x] = {{1—-k)g+kx : 0 < k < 1}. It is well known that R-weakly commuting,
R-subcommuting and E-subweakly commuting maps are compatible but not
conversely in general (see {10-12}).

Ifwe E,M C E, then we define the set Py(u) of best M-approximants
to u as Py(u) = {y € M :po(y —u) = dp, (u, M), for all p, € A*(7)}, where
dp, (u, M) = inf{py(z — u) : x € M}. A mapping T : M — E is called
demiclosed at 0 if whenever {z,} converges weakly to x and {T'z,} converges
to 0, we have Tz = 0.

In [4], Fisher and Sessa obtained the following generalization of a theorem
of Gregus [5].

Theorem 1.1. Let T and I be two weakly commuting mappings on a closed
convex subset C of a Banach space X into itself satisfying the inequality,
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1Tz =Tyl <alllz — Iyl + (1 - a)max{||Tz — Iz||, [Ty - Iyli},  (1.1)
for all z,y € C, where ¢ € (0,1). If I is linear and nonexpansive on C and
T(C) C I{C), then T and I have a unique common fixed point in C.

In 1988, Mukherjee and Verma [17] replaced linearity of I by affineness in
Theorem 1.1. Subsequently, Jungck {12} obtained the following generalization
of Theorem 1.1 and the result of Mukherjee and Verma [17].

Theorem 1.2. Let 7" and I be compatible self maps of a closed convex
subset C' of a Banach space X. Suppose that I is continuous, linear and that
T(C) C I(C). If T and I satisfy inequality (1.1), then 7 and I have a unique
common fixed point in C.

In this paper, we first prove that Theorems 1.1-1.2 can appreciably be
extended to the setup of Hausdorfl locally convex space. As applications,
common fixed point and invariant approximation results for a new class of
subcompatible maps are derived. Our results extend and unify the work of Al-
Thagafi [1], Ciric [3], Fisher and Sessa [4], Gregus [5], Habiniak [6], Hussain
and Khan [7], Hussain et al. [8], Jungck [10], Jungck and Sessa [13], Khan and
Hussain {14}, Khan at el. [15], Mukherjee and Verma [17], Sahab, Khan and
Sessa 18], Singh [23,24] and many others.

2. Main Results
We begin with the definition of subcompatible mappings.

Definition 2.1. Let M be a g¢-starshaped subset of a normed space E. For
the selfmaps I and T of M with ¢ € F'(I), we define S,{I,T) := U{S(I,T}) :
0 <k < 1} where Trr = (1 — k)g + kTz and S(I,T}) = {{z.} ¢ M :
limplz, = lim,Tyx, =t € M = limy||I Tz, — Tplz,|l = 0}. Now I and T
are subcompatible if lim,, || 1Tz, ~ T 1z,|| = 0 for all sequences {z,} € S,(I,T).
We can extend this definition to locally convex space by replacing norm with
a family of seminorms.

Clearly, subcompatible maps are compatible but the converse does not
hold, in general, as the following example shows.

Example 2.2. Let X = R with usual norm and M = [1,00). Let I(z) = 2z -1
and T'(z) = 2*, for all z € M. Let ¢ = 1. Then M is ¢-starshaped with Ig = ¢.
Note that I and T" are compatible. For any sequence {z,}in M with lim,z, =
2, we have, lim,Ix, = lzmnTzacn =3e M= lzmnHITmn — TzI’En[E =
However, lim,{|{Tz, — TI Jjn[i # 0. Thus I and T are not subcompafmble



1844 S. Al-Mezel and N. Hussain

g € F(I) and T'(M) C I{M). If the pair {I,T} is subcompatible and satisfies,
for all p, € A*(7), z,y € M, and all k € (0,1),

Pa(T2-Ty) < pa(fw~fy)+1 K max{dy, (Iz,[g, T'z]). dp, (1y, [g, Ty}, (2.2)

then I and 7" have a common fixed point in M provided one of the following
conditions holds:

(¢} M is 7-compact and T is continuous.

(i) M is weakly compact in (E,7), I is weakly continuous and [ — T is
demiclosed at 0.

Proof. Define T, : M — M by

T =(1-ky)g+ k. Tz

for some g and all z € M and a fixed sequence of real numbers k, (0 < k, < 1)
converging to 1. Then, for each n, T,(M) C I(M) as M is convex, I is linear,
Iq=gand T(M) C I{M). Further, since the pair {I, T} is subcompatible and
I is linear with Iq = ¢ so, for any {z,,} < M with lim,, Iz, = lim,,, Thz,, =
t € M, we have

Eirin PalTodzy — ITyxm) = ky lim p,, (TIZp — IT2,,)
= 0.

Thus the pair {I,7,} is compatible on M for each n. Also, we obtain from
{2.2),

pa(Tnm - Tny) = knpa (TSC - Ty)

11—k,
S kn{pa(ffr - Iy) + k max{pa(fm o Tnx)apa(fy - Tny)}}

T

= knpa(fm - Iy) + (1 - kn) max{pa(fl‘ o Tnx):pa(fy - Tny)}u

for each x,y € M, p, € A*(r) and 0 < k,, < 1.

(1) M being T-compact is 7-bounded and 7-complete. Thus by Theorem 2.6,
for each n > 1, there exists an z, € M such that z, = Iz, = T,z,. Now
the T-compactness of M ensures that {z,} has a convergent subsequence {z,}
which converges to a point zy € M. Since z; = Tjz; = k;Tz; + (1 — k;) and
T is continuous, so we have, as 7 — 00, Tz = xy. The continuity of I implies
that

J J
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(#) Weakly compact sets in (£, 7) are 7-bounded and 7-complete so again by
Theorem 2.6, T,, and [ have a common fixed point z, in M for each n. The
set M is weakly compact so there is a subsequence {z;} of {x,} converging
weakly to some y € M. The map I being weakly continuous gives that Ty = y.
Now

zj = I(z;) = Tj{z;) = kjTr; + (1 — ky)g

implies that Iz; —Tx; = (1-k;)[¢—Tz;] — 0 as j — oco. The demiclosedness
of I —T at 0 implies that (/ — T')(y) = 0. Hence Iy = Ty = y.

An application of Theorem 2.7 establishes the following result in best ap-
proximation theory.

Theorem 2.8. Let T and I be selfmaps of Hausdorff locally convex space
(E,7) and M a subset of E such that T(8M) C M, where 8M denotes
boundary of M and u € F(T) n F(I). Suppose that Py(u) is nonempty
convex containing ¢, ¢ € F(I), I is nonexpansive and linear on Pys(u) and
I{Pp(u)) = Pag(u). If the pair {I,7} is subcompatible on Py (u) and satis-
fies, for all z € Pas(u) U {u}, po € A*(7) and k € (0,1),

PolTz — Ty)
< Po(lz — Tu) ify=u,
- pa(I$WIy)+ I—E—g’-ma}{{d a(Ii’.ﬁ [Q,Tﬂf}),dpa(l“y, [Q=Ty])}? lfy € PM(U‘)a

then Py(u) N F(I) N F(T) # §, provided one of the following conditions is
satisfied:

(¢} Par(u) is 7-compact and T is continuous on Py (u).

(i) Pyr(u} is weakly compact in (E,7), I is weakly continuous and I — T is
demiclosed at 0.

Proof. Let y € Py(u). Then as in the proof of Theorem 2.6 of [15](see also
9,12]) Ty € Py(u) which implies that T maps Py (u) into itself and the
conclusion follows from Theorem 2.7.

Remark 2.9. (i) l-subcommuting maps are subcompatible, consequently,
Theorem 2.2-Theorem 3.3 due to Hussain and Khan [7] and Theorem 2.3 of
Khan and Hussain [14] are improved and extended.

(44) Commuting maps are subcompatible so Theorems 2.7-2.8 are proper gen-
eralization of the main results of Brosowski [2], Habiniak [6], Sahab et al. [18],
Sahney et al. [19], Singh [23,24], Tarafdar [25], Theorems 6-7 due to Jungek
and Sessa [13] and Theorem 2.6 due to Khan et al.{15).
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