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Abstract

It is known that the designs PG,,_;(n, ¢) in some cases have spreads of maximal x-arcs. Here a
x-arc is a non-empty subset of points that meets every hyperplane in 0 or % points. The situation for
designs in general is not so well known. This paper establishes an equivalence between the existence
of a spread of a-arcs in the complement of a Hadamard design and the existence of an affine design
and a symmetric design which is also the complement of a Hadamard design.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

An g-arc in a 2-design is a subset of points that meets every block in either O or « points.
[7.8].

Rahilly [6] established the equivalence of the existence of an affine design of class number
4 and a Hadamard 2-design possessing a spread of lines of maximum size 3. By observing
that a line of maximum size 3 in a Hadamard design is a 1-arc in the complementary design,
we are able to extend this result and to state it in the language of maximal arcs in designs.
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affine case can be expressed entirely in terms of y and m as follows: v = um? k= pm, A=
(wm = 1)/(m = 1), r = (um® = 1)/(m — 1) and b = rm.

A 2-(v, k, A) design D is symmetric if b = v. It is well-known that D is symmetric if and
only if its dual design D* is also a 2-(v, k, A) design.

A Hadamard 2-design is asymmetric 2-(v, k, 4) design with v=4/+43 and k=2/+1. Such
adesign exists if and only if there exists a Hadamard matrix of order v+ 1. A complementary
Hadamard 2-design is the complement of a Hadamard 2-design:; so its parameters are of the
form 2-(44+ 3,24+ 2, A+ 1). The Hadamard conjecture asserts that a Hadamard matrix
of order n exists if and only if n = 2 or n is divisible by 4.

Given a Hadamard 2-(44 + 3, 24 + 1, /) design D, introduce a new point w and adjoin
it to each block of D. These extended blocks and their complements give an affine 3-
(47 + 4,2/ + 2, 2) design. Any affine 2-design of class number 2 is in fact a 3-design
obtained in this way from some (not necessarily unique) Hadamard 2-design.

The preceding discussion relating Hadamard matrices to particular classes of symmetric
designs and affine designs of class number 2 is well-known. The idea has roots in a paper
of Bose [2]. However, Rahilly [6] showed that there is a connection between Hadamard
2-designs and affine designs of class number 4.

Proposition 2 (Rahilly [6]). There exists an affine 2-(1641, 4y, (4 — 1)/3) design if and
only if there exists a Hadamard 2-(16p — 1,8 — 1,4 — 1) design with a spread of lines,
all of maximum size 3.

In this paper, we shall extend Rabhilly’s result to affine designs of class number m, where
m =4, To this end we extend the concept of lines of maximum size. One might think that
this means considering, for example, plane spreads but it turns out that considering spreads
of a-arcs in complements of Hadamard 2-designs leads more naturally to a generalization
of Rahilly’s theorem,

Rahilly’s results on line spreads were for symmetric designs. We shall consider the more
general theory of spreads of a-arcs in the wider setting of 2-designs, which need not be
symmeltric.

3. Spreads and z-arcs

First in this section, it will be shown that a line in a design D may be viewed as an a-arc
in the complementary design D.

Lemma_S. Let D be a 2-(v, k, ) design k > 3. Then a subset of points of D is a maximum
line in D if and only if it is an o-arc in D with o= r/(r — J).

Proof. LetA be an o-arc in D, where o = r/(r — A). By definition, |A| = | + r(x — /A=
I + r/(r — 4). Therefore |A|>2 and so any block of D meets A in 0 or r/(r — 4) points;
hence any block of D either contains A or meets A in exactly one point. Each of the blocks
that contains two distinct points of A must therefore contain all of A and hence the line
Joining the two points. From the previous section, we know that a maximum line of D has
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exactly 1+ (v —1)/(v—k) points, which is easily shown to equal |A| using the basic design
parameter relations. [J

Hence A is a line in D. The converse is straightforward.

IF A is an o-arc of D, then D, denotes the induced design defined on the points of A,
whose blocks are the secants of A, with induced incidence. Thus a secant B induces a block
of D4 whose points are those of AN B. Clearly D4 isa l-(a, o, r) design, where |A|=a and
r is the replication number of D. The following lemma is essentially in [8] but we include
the proof for completeness.

Lemma 4. Let A be an a-arc in a 2-(v, k, A) design D. Then

(@) Dy isa?2-(a,a, A) design, wherea = |A| =1 + r(a— 1)/4,

(b) A has exactly ra/u secants and b — ra/a passants,

(¢) any point not in A is on exactly Aa /o secants and r — Aa /o passants,
(d) the passants of A form an (r — ) /a-arc in D*.

Proof. Condition (a) is straightforward. Moreover, for D4 the parameters ‘r’ and ‘b’ are,
respectively, the replication number r of D and the number of secants of A. The standard
equation ‘bk = vr’ then gives (b).

To prove (c) let p be a point not in A and N the number of secants on p. Counting in two
ways the number of flags (g, B), where B is a secant on pandqg € AN B, gives al = No.
Finally, (d) follows easily from (¢c). O

Next, we consider the number of common secants and passants of two disjoint arcs.

Lemma 5. Let A; be an o;-arc and |A;| = a; fori=1,2, where Ay N\ Ay = @. Then the
number of secants common to Ay and A, is Aaaa /o o2 and the number of common passants
isb — (ayo2 + azo) — Aayas) o or.

Proof. Let x be the number of common secants. Counting in two ways the number of
ordered triples (py. p2, B), where p; € A; and B is a block containing p; (i =1, 2), gives
ayazA = xo 0. The rest is straightforward using this result and Lemma 4. [J

Remark 6. Rahilly [6] defines a spread of maximum lines to be uniform if the number of
blocks containing any two lines of the spread is constant. He then proves that every spread
of maximum lines in a Hadamard 2-design is uniform. However, this is true for all 2-designs
as can easily be deduced from Lemmas 3 and 5.

The mth multiple design of a design is obtained by repeating each of its blocks m times.

The case when the induced design on an o-arc is a multiple of a symmetric design is
of special interest. Let D be a 2-(v, k, A) design with an a-arc A. Then Dy is a 2-(a, «, A)
design, where a = 1 + r(o — 1)/4 and the replication number of D, is r, that of D. Hence
if D4 is a multiple of a symmetric design, then it is the (r/c)th multiple of a symmetric
2-(a, o, ') design denoted by [D4], where 2 = Ja/r. In this case we shall say that A is a
symmetric a-arc.
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A setof o-arcs that partitions the point set of D will be called an a-spread. 1f all the a-arcs
in the spread are symmetric, it is called a symmetric a-spread.

In view of Lemma 3, every r/(r — A)-spread in D is a line spread in D in the sense of
Rahilly [6]: that is a partition of the point set by maximum lines. We shall show that in the
case & =r/(r — A), all z-arcs and a-spreads are symmetric.

Lemma 7. Every [r/(r — A)]-arc in a 2-(v, k, /) design is symmetric and is a maximum
line in the complementary design.

Proof. First note that if x is a point of a maximum line of a 2-(v. k, A) design, the number
of blocks containing x but not the whole line is r — 4, the order of the design.

Now suppose A is an o-arc of a 2-(v, k, 4) design D, where oo=r/(r — 4). Then |A| =1+«
and Dy isa2-(x+ 1, o, o — 1) design. By Lemma 3, A is a maximum line in D. Therefore,
given a point of A, the number of blocks of D meeting A only at that point is the order of
D, which is the same as the order r — A = r/a of D. Hence each block of Dy is repeated
r/o times and so A is a symmetric a-arc. [

Theorem. There exists an affine 2-(um?>, um, (um — 1)/(m — 1)) design and a comple-
mentary Hadamard 2-(m — 1, %m, %m) design if and only if there exists a complementary
Hadamard 2-(pum? — 1, %umz. %‘umz} design with a symmetric %m-.'rpread.

Proof. First assume there exists an affine 2-(um?, um, (um — 1)/(m — 1)) design I and a
2-(m — 1, %m. %m) design 4.

Choose a point w of I'. Then on the remaining um? — 1 points of I" define a design IT
whose blocks are obtained thus. For each parallel class C of I', identify the m — 1 blocks
of C not on w with the points of 4. Then the union of the +m blocks of I’ corresponding to
a block of 4 is defined to be a block of IT. i

Hence IT has yim? — 1 points and jm x %m = %Jum2 points on each block. To evaluate the
replication number of [, let x be any of its points. There are ‘r — 4’ = pm parallel classes
of C of I' such that x and w are on different blocks from C.

The block of C on x, considered as a point of 4, is in %m blocks of IT. Hence x is on %m
blocks of IT induced by C. Therefore, in total, x is on (1m) x (um) =  um? blocks of IT.
It follows that I is a symmetric design since ‘r =k". )

Now consider two distinct blocks X and Y of IT. If they are induced by the same parallel
class C of I', then from the parameters of 4 it follows that X and Y have %m blocks of C'in
common and therefore meet in (%m) x (pm) = %;tmz points of IT.

Suppose on the other hand, that X and Y are induced by different parallel classes of I'.
Since X and Y each consists of %m blocks of I' and non-parallel blocks of I meet in y
points, it follows that X and Y meet in exactly p x {%m)2 = %;unz points of IT.

Hence the dual of IT is a symmetric 2-design. Therefore IT and its dual IT* are symmetric
2-designs with parameters 2-(um?* — 1, %‘um, %um)‘

Next, we show that IT* has a symmetric %m spread. Let C be any parallel class of I and
x any point of I1. Let X be the block of C on x. If also w is on X, then no block of IT induced
by C contains x. Otherwise the number of blocks on x induced by C is the number of blocks
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containing X (considered as a point of 4) which is therefore the replication number %m of
4. Hence the m — 1 blocks of IT induced by C form an a-arc in IT*, where o = {;m. We
show this arc is symmelnf_ noting here that r /ot = zprnz/‘s;m = um.

In lhe case when x is on 3m blocks of I7 (induced by C), all the om points of X are on the
same 2m blocks. This shows that the m — 1 blocks induced by C form a symmetric ,m arc
in IT*.

Clearly, by varying C over all parallel classes of I, we obtain a symmetric ~m spread in
n*

Convcmdy, assume the existence of a 2-(um? — 1, zpm —;{m 2) design D with a sym-

meltric §m -spread X. Let A € X. Then A is a symmetric ,m arc. Further, by Lemma 4,

[A|=m —1,A has ym(m — 1) secants and pum — | passams Since A is a symmeltric J;m -arc

it tollows easily that D, is a symmetric 2-(m — 1, im zm) design.

Define a design I" as follows. The points of I" are those of D* and a new point, labelled
w. The blocks of I' are of two types. Type 1 blocks are labelled (A), A € X. Hence there
are (um?* — 1)/(m — 1) blocks of Type 1.

Type 2 blocks of I' are labelled (A, e), where A € X and e is any block of [ D 4]. Hence
smce PHE— (;tm' —1)/(m — 1) and each [Dy] has m — | h]ocks it follows that there are
um? — 1 blocks of Type 2. Therefore I" has exactly m (um?* — 1)/(m — 1) blocks.

Finally to complete the definition of I', we define incidence in I'.

() If A € Z, then (A) is incident with w and with all the passants of A in D: they are
points of D* and therefore of I'. By Lemma 4, (A) is on exactly 14 (um — 1) = um points.

(i) Let (A, e) be a Type 2 block as defined above. Each block e of [ D 4] is the intersection
with A of any one of um secants an in D since A | 15 symmetric; so that each block of D4
is repeated ‘r /o’ times. (Here r = jpm and ot = 2m .) These pm secants as points of D*
are defined to be 1ncndt.m with (A, e) in I

Hence I" has pm? points, with om points on each block. Next, we show I is a 2-design.
Consider two distinct points X and Y of I". There are two cases.

Case 1: Y =w. Then only Type 1 blocks contain X and Y and the number of such blocks
is the number p of A € X for which Yis a passant in D. Since X parlllmm the points of D
and Yis asecant to (um> — 1)/(m — 1) — pofthc ym-arcs in X, then (um? —1)/(m — 1) —

= (,Jumz)/( 5m) = um, whence p = (um — I)/(m = 1).

Case 2: NulherX nor Y is w. Let 7 be the number of A € X such that X and Y are both
passants of A in D. Then exactly ¢ = (um? — 1)/(m — 1) — 2p+ nof the arcs A € X are
such that X and Y are both secants of A. Furthermore, 7 is the number of Type 1 blocks of
I’ containing both X and Y.

Let 7 be the number of Type 2 blocks of I' containing X and Y. We need to evaluate
m + 7. First observe that X and Y are both secants to Lxdc.lly o of the arcs in X. That is they
induce the same block in t of the symmetric 2-(m — 1, —m 4m) designs [D 4], and induce
different blocks in the ¢ — 7 remaining [D4]. where A € X and X. Y are both secants of
A. That is, for 7 of the arcs A € Z,the blocks AN X and AN Y of [D4] are equal, so lhd[
[ANXNY|=|ANX| _zm while for @ — 7 of the arcs, AN X and A N Y meet in 4 am
points, so that [ANX N Y| = —m For the remaining A € X, either X or Y is a passant, so
that ANX NY = ¢
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Since from the parameters of the symmetric design D we have |(XNY|= %,um{ it follows
that %pmz = %mt + %m(a — 1), whence ym =0 + T. Substituting for @ and p we obtain
T+t=(um—1)/(m—1)=p.

1t follows that I' is a 2-(um?, pm, (um — 1)/(m = 1)) design. A straightforward check
will verify that I' is resolvable: a typical parallel class is given by each A € X and consists
of the block (A) together with the m — | blocks (A, €), where e is any of the m — 1 blocks
of [D4]. Hence from Bose's theorem (see Section 1) it follows that I is affine. [

As a corollary we can readily obtain the proposition due to Rabhilly [6] stated earlier. Since
a2-(3, 2, 1) design always exists. then for m =4 the above theorem states that the existence
of an affine 2-(16p, 444, 31;{4;1 — 1)) design is equivalent to the existence of acomplementary
Hadamard 2-(16p — 1, 8y, 410) design with a symmetric 2-spread. Now apply Lemma 3.

An interesting case is m=4, =7 Then the theorem implies that the existence of an affine
2-(112,28,9) design is equivalent to the existence of a Hadamard 2-(111,55,27) design
with a spread of lines, all of size 3 The existence of such an affine design is undecided.
According to Tonchev, it is the smallest undecided affine 2-design: on the other hand, there
exist Hadamard designs on 111 points but it is not known whether any of them have spreads.

Examples of spreads of g-arcs are (0 be found in the designs PG,—1(n, ¢) of the points
and hyperplanes in PG(n,q). 1ft + 1 divides n + 1, then PG,_1(n,q) contains a spread
of t-dimensional subspaces which in the complementary design is a symmetric ¢'-spread.
See, e.g. [3].

Jungnickel and Tonchev [5] showed that there exist symmetric designs with the param-
eters of, but not isomorphic to PG,_1(n, q), namely GMW designs, possessing spreads of
o-arcs.
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Y(ni® ml.) = 22(ni,m;) 4,

l l

Yla(n) ® pa(my)) —s lv12(ni)piz(my))

! l

Ylvas(ni) ® pas(mi)] —» 2o[vas(ni)ugs(m;)]

Similarly, by interchanging the variables, the other diagram can also be considered. Hence

Proposition 3.1.1. K ry= (a,;j, Hij, Vij, Bij) : K; — K; are MC morphisms, then the composition
Kjk o Kij : Kj — rightarrowK, is also an MC morphism.,
Examples 3.1.2. Let K = (A,M, N, B) be an MC and let M, and N; be submodules of M and N,
respectively. If K = (A, My, Ny, B) is also an MC, then k = (1a, p, v, 1) : K1 - Kisa morphism
of MCs K, into K, where y and v are the embeddings y = My My = M and v — in, M - M.
In [5], Miiller called K a subcontext of K If we assume K — (A, M/MI,N/Nl, B) and K is also
an MC, then x = (Lasp1n18) 2 K'% B s o MC morphism, where 1 and v are the natural
epimorphisms. K is a homomorphic image of K.

Following example is a continuation of Example 2.1.1.

Example 3.1.3. Let By = R be any ring and Ay = Mp(R), My = R(™) (row wise), and N; = (W R
(column wise). Considering M a (B1, A1) - bimodule and N; an (Ay, By) - bimodule, one can
always get an MC, K, = (A1, My, Ny, By) where the first MC map (,) 4, is defined by the dyads

ny By -2 mamy,
( ![ml"'mﬂJ)Alz € A4
nn nnml S nnmn

and the second M(C' map (,)p, is defined by the dot product

n
([ml---mn], sy =rany 4o+ mang & By

T

If we choose another ring, say, By — S, then on the similar pattern one can construct another
MC K3 = (A3, M3, Ny, By).
Let f:R—> Sbea homomorphism of rings. Then

f5S (f{n):f-‘:v:f)

is a morphism of MCs from K into K5, where fm) : A1 = Ay and 1 : My — M, are as defined
in Example 2.2.1 and v : N1 — Nj can similarly be defined as K, but on column vectors. Clearly,
K= (f(nJ,p,, v, f) mostly depends on f:By— By. In particular, if f is monic or epic then so is x.
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3.2. Morphisms Between Rings of Morita Contexts

A; N;
For any MC K; = (A;, M;, N;, B;), let us denote its context ring by T; = . Define
‘ M; B,;
map
a v
T= . Tl g 4 T2
n B
by
a v a n a(a) v(n)
p B||m b u(m) B(b)

Then we have

Examples 3.2.1. Let K; = (A;, M;, N;, B;) be MCs and k = (a,p,v,B8) : K1 = K2 an MC
a v

morphism. Let T; be the MC rings of K;. Then the map v = : Ty — 15 is an

p B

identity preserving ring homomorphism. Moreover, Ker(7) is an ideal of T} and if p is (3, )
- strong and v is (a,f) - strong, then Im(7) is a subring of Tb. In this last case, Im(k) =
(a( A1), p(M1),v(N1), B(B1)) is an MC and I'm(7) is the ring of the context I'm(k).

Proof. The axiom under addition is trivial, while the axiom under multiplication is proved as
follows.

a n][d n ad + (n,m')a,  an'+nb
m b m Y ma +bm’  (m,n')p, + bb
a(a)a(a’) + (v(n),u(m') s, ala)v(n’) +v(n)B(Y)
p(m)a(a) + pO)u(m’)  (u(m),v(n'))s, + B(b)BD)
ala) v(n) ala’)  v(n)

u(m) B(b) u(m')  B(b')

Remaining parts can be proved by using commutative diagrams given in the construction of
the MC morphisms.

4. Applications

4.1. Projective Morita Contexts (PM(C). An MC K is termed as a PMC, the abbreviation
for a projective Morita context, if the two Morita context maps are surjective. K is a PMC iff it
satisfies Morita Theorems I and II ([3, Sectjep 5.12') The term PMC is used in [7] just to shrink
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the phrase “Morita context satisfies Morita Theorems Iand IT”. We also say that an MC ring T is
a PMC ring if its context K is a PMC.

Theorem 4.1.1. Let k = (a,p,v, B) : K - K' be a context morphism between MCs
K =(A,M,N,B) and K’ = (A',M',N', B").

(i) If K’ is a PMC, « and f3 are monomorphisms, and u and v are (8, a) and (e, B) - epimor-
phisms, respectively, then K is a PMC.

(ii) If K is a PMC and k an epimorphism then K’ is also a PMC.

Proof. (i) Let K’ be a PMC, that is the two Morita context maps (,) 4/, and (,)p: are epimor-
phisms. Consider the commutative daigram:

MeouN Y8 g
#®vl lﬁ

—_
M.' ®A" NF (, )B“ Br

Since p and v are epic, u®v is epic, also 4 is monic and (:)'p is both monic and epic, so (,)B is
epic. Similarly (,) 4 is also epic. Hence K is a PMC.

Proof of (ii) is similar to (i).

In this theorem in (i) in fact we have proved that the homomorphic image of a PMC is a
PMC. While in (i) we have proved its partial converse. The combined result is the following
Corollary 4.1.2. Let K = (A, M, N, B) and K’ = (A, M',N', B) be two MCs with the common
base rings A and B. If kK = (1a,p,v,18) : K — K’ is an epimorphism, then K is a PMC.

4.2. Nondegenerate Morita Context

Recall that an MC K = (A, M, N, B) is nondegenerate iff it satisfies any one of the conditions of
following lemma. For the proof one may refer to [5,8, & 9]. Let us also an MC ring T' nondegenerate
if its context K is nondegenerate.

Lemma 4.2.1. For an MC K = (A, M, N, B) the following are equivalent.

(i) Ma, Ng gM and 4N are faithful and the two MC maps (,)4 and (,)p are also faithful.
(ii) My is faithful and (N, m)4 # 0 whenever 0 #me M.
(iii) All A-modules and B-modules associated are I-free and J-free.

Theorem 4.2.2. Let k = (a,pu,v,8) : K — K’ be a homomorphism of MCs K and K’ such
that a and p are monomorphisms and v is an epimorphism. If the MC K’ (respt. MC ring T') is
nondegenerate, then K (respt. T') is also nondegenerate.

Proof. Assume that Mya = 0,4, for some a € A. Then for all m € M, ma = 0ps. Or

plrma) = p(m)afa) = 0y
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But M, is faithful, so a(a) = 0 and since a is a monomorphism, a = 04. Hence M is faithful.
Next, assume that (N, m)4 = 04. Then

a(N,m)a = (v(N),u(m))a = (N', p(m)) a» = O

which implies that pu(m) = 0. But according to the hypothesis, p is monic, m = 0. Hence both
conditions of Lemma 4.2.1 (ii) are satisfied and which implies that K be nondegenerate.
Theorem 4.2.3. Let k = (o, u, v, §) : K = K’ be a morphism of an MC K into another MC K’
such that a and p are isomorphisms. If K (respt. T') is nondegenerate, then K’ (respt. 7") is also
nondegenerate. A

Proof. Let the MC K = (A, M, N, B) be nondegenerate. Assume that in K’ = (A’,M',N’, B'),
M'a’ = 0pp for some o’ € A’. Since u(M) C M’ and «a is an epimorphism, there exists a € A such
that

M’ = u(M)a(a) = u(Ma) = {Opr}

Since p is monic, Ma = {0y} and as My is faithful, @ = 04, which implies a’ = 0p.
Now assume that (N',n’) = {04/}. Since ¥(N) C N’ and p is epic, then for some m € M

(v(N), s(m)) 4 = (N, m) = {04}

But « is monic, so (N,m) = {04} which implies that m = 0py. Hence u(m) = m’ = 0, and by
Lemma 4.2.1 we conclude that K’ is nondegenerate.

4.3. Context Existence/Ring Extensions

This section poses another example of morphisms between Morita contexts. In fact, in the following
context extensions and ring extensions are mutually studied.

Let A and B be rings and as previously, @ : A — B, a ring homomorphism such that
a(l4) = Ig. Assume that M is an A - module and D = Endj(M), the ring of endomorphisms
on My. Next we assume that £ = Endg(M ®4 B), the ring of endomorphisms on M ®4 B in
Mod — B. Then M ®a B becomes an (E, B) - bimodule, and there is a ring homomorphism
o : D — E defined by

o(d)(m®b) =d(m)®b,

where b€ B, d € D and m € M. Clearly, a(Ip) = Ig.

The Context Induced from the Derived Contexts. Now consider the dual module
M* = Homu(M,A) of M. Let K = (A,M,M*, D) be the derived context of M. Instead of
putting some conditions on M, assume that M* ®p E is left B-module. We will continue this
assumption up to the end. Now we claim that K' = (B,M ®4 B, M*®p E, E) is a Morita context.
We call it a context induced from the derived context of M. Indeed
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(M*®pE)@r(M®aB) =& M*@pMQ@aB
— A®aB
R
where the arrow is the MC map (,)4 : M*®p M — A of the first MC K. Simiarly
(M*©4B)@s (M*®pE) % M@sM OpE

— D®pE

~ FE ,

The Morphism Between Derived and Induced Contexts. Assume that kK = (o, u,v,0) : K = K, is
a map in which @ : A — B and 0 : D — E are as given above, p : M — M ®4 B is defined by
u(m) =m® 1p for all in € M and v : M* -+ M* ®p B is defined by v(m*) = m* ® 1g. Then we
have 4

Theorem 4.3.1. If A, B,D,E,M,M* a,0,u and v are as given above, then x = (o, u,v,f3) :
K — K' is an MC morphism.

Proof. First we verify that y and v are (o, @) - and (@, o) - homomorphisms, respectively. Indeed,
forallae A, d € D, m ¢ M, and m* € M*, we can write the following relations

p(dma) = o(d)(m® 1p)a(a)
= d(m)®a(a)
and
viam*d) = a(a)(m*® 1g)o(d) ?
= afa)[m* @ a(d)]

Next we establish the commutativity of the following diagrams

M ®s M* QB) D

- I

(M ®4 B)®p (M*®p E) (TE E

and
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M*®p M 94 A
o] o
.
(M" ®p E) ®e (M ®4 B) (s)B B
In the first diagram, in one direction

[0o()plX(mi®@m]) = o[ (mi,m{)p € E

and from the other direction we get

(()eopdv]E(miemi) = ()eXlumi) ®v(m])]

Il

Z(m‘ ® 1B)m: ® IE)E

e E
Note that, forany n € M and b€ B
| o(m,m*)p(n®b) = (m,m*)pn®b
] = m[m*(n) @b

Similarly
(mM®1p)@(M*®1lg) — (MEmM")®lg
— (m,m*)p®1lg
— (m,m*)plg € E

Then, by evaluating n ® b at the last function, we get

(m,m*)plp(n®b) = m[m*(n)] @b

Hence we conclude

(JEop®v=00()p

For the second diagram one can similarly prove that

[a o(,)al= [(r)B e véﬂ']

Hence we conclude that « is morphism between contexts.
The following is an immediate consequence of above theorem.
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Corollary 4.3.2. Let T and 7" be the rings of MCs K and K’, respectively. Then the MC map
k : K — K' of above theorem induces the ring homomorphism 7 : T — T".

4.4. Static Modules

M -Static Modules. An object V' of Mod — A is static if it remains invariant under the composition
of the adjoint functors Hom4 (M, —) and — ® p M. In particular, the ring A as an A - module is
M - static if M* ®p M = A via the natural isomorphism m* ® m — m*(m) for all m € M and
m* € M*.

In case the ring A is M — static, by [6, Lemma 3.5] we have
Lemma 4.4.1. If the ring A is M — static, then

M*®p E = (M ®,4 B)*

as E-modules via the map

k l
(m*® f) (Z m; ® bi) =Y (m*,nj)e
i=I j=1

where mi,n; € M, m* € M* and b;,c; € B and f € E is such that

k 1
f (st®b,-) =) n;®c;
i=1 j=1

Hence we state that
Theorem 4.4.2. If the ring A is M — static, then the induced derived contex of M is isomorphic
to the derived context of M ® 4 B. The respective rings of contexts are also isomorphic.
Proof. It follows from Theorem 4.3.1 and Lemma 4.4.1 that there is an MC morphism from the
induced derived context of M to the derived context of M ®4 B given by

= (o, 4,V B) : K' - K"

where

K" = {B,M ®4 B,(M ® B)*,E}

Clearly, o/, 3 and p’ are the identical maps while

vV :M*®p E — (M ®a B)*

is an isomorphism as given in the Lemma 4.4.1. Hence &' : K’ — K" is an MC isomorphism. The
last statement follows from Corollary 4.3.2.

Corollary 4.4.3. If the ring A is M — static, then there always is a morph1sm (respt. ring
homomorphism) between the derived contexts (respt. rings of derived contexts) of M and of
M ®a B.
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Proof. By Proposition 3.1.3, the composition of the MC morphisms
K % K' 55 K"

is an MC morphism.
If the derived context of M is a PMC, then A becomes M — static. By using Theorems 3.3

and 3.4 of [6] we restate that ;
. Corollary 4.4.4. (a) If K, the derived context of M, is a PMC, then K', the induced derived

context of M, and the derived context K" of M ®4 B are also PMCs.
(b) If & : A — B is a monomorphism then K is a PMC if and only if K’ (or K”) is a PMC.

4.5. Purity

Let the ring homomorphism a : A — B be a pure homomorphism. Then for every M € Mod — 4,
the a-homomorphism p : M ®4 B is injective (Example 2.1.2). i

Recently, in studying relationship between effective descent morphisms a_nd‘ pure homomor-
phisms, Mesablishvili in [4;3.2. Theorem| proved that

Theorem 4.5.1. If o : A — B is a pure homomorphism of commutative rings and if for any
M € Mod — A, M ®, B is f.g., flat, and f.g. flat, and f.g. projective in Mod — B, then M is f.g.,
flat, f.g. flat, and f.g. projective in Mod — A, respectively.

By using Corollary 4.4.4 (b), we can add one more property in the above list without involving
commutativity of rings.
Corollary 4.5.2. If « : A — B is a pure (or simply injective), then M is a progenerator of
Mod — A if and only if M ®4 B is a progenerator of Mod — B.
Proof. Recall that M is a progenerator of Mod — A if and only if any arbitrary MC
K =(A,M,N,C)isa PMC (cf. B & 7]). Then g\N¢ = M* and C = End (M4) = D. This holds
if and only if the derived context of M, K = (A, M, M?*,D) is a PMC. Note that, ifa: A = B
is a pure then it is also injective. By Corollary 4.4.4(b), K is a PMC if and only if the induced
context K’ of M®4 B is a PMC, which holds if and only if M ®4 B is a progenerator of Mod — B.
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